Long non-coding RNA-mediated transcriptional interference of a permease gene confers drug tolerance in fission yeast

نویسندگان

  • Ryan Ard
  • Pin Tong
  • Robin C. Allshire
چکیده

Most long non-coding RNAs (lncRNAs) encoded by eukaryotic genomes remain uncharacterized. Here we focus on a set of intergenic lncRNAs in fission yeast. Deleting one of these lncRNAs exhibited a clear phenotype: drug sensitivity. Detailed analyses of the affected locus revealed that transcription of the nc-tgp1 lncRNA regulates drug tolerance by repressing the adjacent phosphate-responsive permease gene transporter for glycerophosphodiester 1 (tgp1(+)). We demonstrate that the act of transcribing nc-tgp1 over the tgp1(+) promoter increases nucleosome density, prevents transcription factor access and thus represses tgp1(+) without the need for RNA interference or heterochromatin components. We therefore conclude that tgp1(+) is regulated by transcriptional interference. Accordingly, decreased nc-tgp1 transcription permits tgp1(+) expression upon phosphate starvation. Furthermore, nc-tgp1 loss induces tgp1(+) even in repressive conditions. Notably, drug sensitivity results directly from tgp1(+) expression in the absence of the nc-tgp1 RNA. Thus, transcription of an lncRNA governs drug tolerance in fission yeast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcription-coupled changes to chromatin underpin gene silencing by transcriptional interference

Long non-coding RNA (lncRNA) transcription into a downstream promoter frequently results in transcriptional interference. However, the mechanism of this repression is not fully understood. We recently showed that drug tolerance in fission yeast Schizosaccharomyces pombe is controlled by lncRNA transcription upstream of the tgp1+ permease gene. Here we demonstrate that transcriptional interferen...

متن کامل

Common themes in siRNA-mediated epigenetic silencing pathways.

Small interfering RNAs (siRNAs) act through RNA interference (RNAi) pathways to silence gene expression either at the transcriptional or post-transcriptional level. Here, we review mechanisms and functions of siRNA-mediated silencing pathways that promote chromatin modifications in the fission yeast Schizosaccharomyces pombe, plants and animals. In fission yeast, siRNAs are involved in heteroch...

متن کامل

Mmi1 RNA surveillance machinery directs RNAi complex RITS to specific meiotic genes in fission yeast.

RNA interference (RNAi) silences gene expression by acting both at the transcriptional and post-transcriptional levels in a broad range of eukaryotes. In the fission yeast Schizosaccharomyces pombe the RNA-Induced Transcriptional Silencing (RITS) RNAi complex mediates heterochromatin formation at non-coding and repetitive DNA. However, the targeting and role of RITS at other genomic regions, in...

متن کامل

Double-stranded RNA-mediated gene silencing in fission yeast.

Double-stranded RNA (dsRNA) can specifically inhibit gene expression in a variety of organisms by invoking post-transcriptional degradation of homologous mRNA. Here we show that dsRNA-mediated gene regulation also occurs in the fission yeast Schizosaccharomyces pombe. We present evidence that: (i) reporter gene silencing is significantly enhanced when additional non-coding sense RNA is co-expre...

متن کامل

Involvement of Dcr1 in post-transcriptional regulation of gene expression in Schizosaccharomyces pombe.

The ribonuclease III Dicer (Dcr1) has been shown to be required for chromosome segregation and gene silencing in Schizosaccharomyces pombe. These effects are thought to be transcriptional, mediated by formation and maintenance of heterochromatin, and guided by small RNAs derived from Dcr1 along a process known as RNA interference. In order to get further insights into the gene regulatory role o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014